Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 277
Filter
1.
Mar Biotechnol (NY) ; 26(2): 243-260, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38294574

ABSTRACT

The caligid ectoparasite, Caligus rogercresseyi, is one of the main concerns in the Chilean salmon industry. The molecular mechanisms displayed by the parasite during the reproductive process represent an opportunity for developing novel control strategies. Vitellogenin is a multifunctional protein recognized as a critical player in several crustaceans' biological processes, including reproduction, embryonic development, and immune response. This study aimed to characterize the C. rogercresseyi vitellogenins, including discovering novel transcripts and regulatory mechanisms associated with microRNAs. Herein, vitellogenin genes were identified by homology analysis using the reference sea louse genome, transcriptome database, and arthropods vitellogenin-protein database. The validation of expression transcripts was conducted by RNA nanopore sequencing technology. Moreover, fusion gene profiling, miRNA target analysis, and functional validation were performed using luciferase assay. Six putative vitellogenin genes were identified in the C. rogercresseyi genome with high homology with other copepods vitellogenins. Furthermore, miR-996 showed a putative role in regulating the Cr_Vitellogenin1 gene, which is highly expressed in females. Moreover, vitellogenin-fusion genes were identified in adult stages and highly regulated in males, demonstrating sex-related expression patterns. In females, the identified fusion genes merged with several non-vitellogenin genes involved in biological processes of ribosome assembly, BMP signaling pathway, and biosynthetic processes. This study reports the genome array of vitellogenins in C. rogercresseyi for the first time, revealing the putative role of fusion genes and miRNA regulation in sea lice biology.


Subject(s)
Copepoda , MicroRNAs , Vitellogenins , Animals , Vitellogenins/genetics , Vitellogenins/metabolism , Copepoda/genetics , Copepoda/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Female , Male , Gene Expression Regulation , Transcriptome , Gene Expression Profiling
2.
Dev Biol ; 504: 38-48, 2023 12.
Article in English | MEDLINE | ID: mdl-37739119

ABSTRACT

The copepod species Acartia tonsa (Dana)(Crustacea) have the unique ability to induce quiescent embryonic dormancy if adverse environmental conditions occur; a characteristic shared by 41 other species belonging to the superfamily Centropagoida in the Calanoida order. However, the transcriptional changes characterizing this process are not known. Here, we compare the transcriptome of embryos in arrested quiescence with the normal development to identify pathways and differentially regulated transcripts involved in quiescent embryogenesis. Quiescence was induced by incubating eggs at 4 °C with anoxia for 26 h(hr), while eggs undergoing normal immediate development were incubated at 16.9 °C in normoxia for 7 h (where gastrulation occurs) or 14 h (where organogenesis occurs) before collecting for RNA extraction and analysis by RNA-sequencing. Results indicate that the expression profile of the quiescent embryo is not as different from the normal embryonic gastrulation as initially expected: None of the mapped transcripts is uniquely expressed in quiescence. Moreover, in quiescence a large proportion of the annotated transcripts display expression values halfway in-between the normal, immediate developmental stages of gastrulation and organogenesis. In depth comparison between the organogenesis stage and quiescent samples, reveal a high degree of divergence, confirming that a developmental arrest has been induced through quiescence. Specifically: Stress response transcripts are prominent in the quiescent phase with a transcript like the mammalian autophagy gene Sequestosome-1/p62 (SQSTM) being upregulated. The present analysis provides a better understanding of the molecular mechanisms characterizing the quiescent embryonic state of A. tonsa.


Subject(s)
Copepoda , Animals , Copepoda/genetics , Copepoda/metabolism , Embryonic Development/genetics , Gastrulation , Transcriptome/genetics , RNA/metabolism , Mammals/genetics
3.
Article in English | MEDLINE | ID: mdl-36565589

ABSTRACT

The calanoid copepod Acartia tonsa (Dana) has attracted interest because of its use as a copepod model organism as well as its potential economic role as live fish larval feed. While the adult genome and transcriptome of A. tonsa has been investigated, no studies have been performed investigating the genome-wide transcriptional changes during the normal subitaneous embryogenesis. Thus, the aim of the current study was to investigate said transcriptional changes throughout A. tonsa embryonic development. RNA extraction and de novo transcriptome assembly for the subitaneous embryogenesis of the copepod was conducted. The assembly includes for the first-time samples describing quiescent development and overall helps establishing a framework for future studies on the molecular biology of our species of interest. Among the findings reported, sequences annotated to well-known developmental genes, were identified. At the same time are described the molecular changes and gene expression levels throughout the entire 42 h the embryonic development lasts. In conclusion, here we present the most complete genome-wide transcriptional map of early copepod embryonic development to date, enabling further use of A. tonsa as a model organism for crustacean development. Keywords: enrichment of pathways; subitaneous embryogenesis, comparative genomics; transcriptome assembly; invertebrate genomics.


Subject(s)
Copepoda , Transcriptome , Animals , Copepoda/genetics , Copepoda/metabolism , Embryonic Development/genetics , Genome , Larva
4.
Biol Bull ; 243(2): 171-183, 2022 10.
Article in English | MEDLINE | ID: mdl-36548979

ABSTRACT

AbstractThe copepods of coastal seas are experiencing warming water temperatures, which increase their oxygen demand. In addition, many coastal seas are also losing oxygen because of deoxygenation due to cultural eutrophication. Warming coastal seas have changed copepod species' composition and biogeographic boundaries and, in many cases, resulted in copepod communities that have shifted in size distribution to smaller species. While increases in ambient water temperatures can explain some of these changes, deoxygenation has also been shown to result in reduced copepod growth rates, reduced size at adulthood, and altered species composition. In this review we focus on the interactive effects of temperature and dissolved oxygen on pelagic copepods, which dominate coastal zooplankton communities. The uniformity in ellipsoidal shape, the lack of external oxygen uptake organs, and the pathway of oxygen uptake through the copepod's integument make calanoid copepods ideal candidates for testing the use of an allometric approach to predict copepod size with increasing water temperatures and decreasing oxygen in coastal seas. Considering oxygen and temperature as a combined and interactive driver in coastal ecosystems will provide a unifying approach for future predictions of coastal copepod communities and their impact on fisheries and biogeochemical cycles. Given the prospect of increased oxygen limitation of copepods in warming seas, increased knowledge of the physiological ecology of present-day copepods in coastal deoxygenated zones can provide insights into the copepod communities that will inhabit a future warmer ocean.


Subject(s)
Copepoda , Ecosystem , Animals , Copepoda/metabolism , Temperature , Oxygen , Water/metabolism
5.
Mar Drugs ; 20(11)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36355004

ABSTRACT

Living organisms deeply rely on the acquisition of chemical signals in any aspect of their life, from searching for food, mating and defending themselves from stressors. Copepods, the most abundant and ubiquitous metazoans on Earth, possess diversified and highly specified chemoreceptive structures along their body. The detection of chemical stimuli activates specific pathways, although this process has so far been analyzed only on a relatively limited number of species. Here, in silico mining of 18 publicly available transcriptomes is performed to delve into the copepod chemosensory genes, improving current knowledge on the diversity of this multigene family and on possible physiological mechanisms involved in the detection and analysis of chemical cues. Our study identifies the presence of ionotropic receptors, chemosensory proteins and gustatory receptors in copepods belonging to the Calanoida, Cyclopoida and Harpacticoida orders. We also confirm the absence in these copepods of odorant receptors and odorant-binding proteins agreeing with their insect specificity. Copepods have evolved several mechanisms to survive in the harsh marine environment such as producing proteins to respond to external stimulii. Overall, the results of our study open new possibilities for the use of the chemosensory genes as biomarkers in chemical ecology studies on copepods and possibly also in other marine holozooplankters.


Subject(s)
Copepoda , Animals , Copepoda/genetics , Copepoda/metabolism , Arthropod Antennae/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Gene Expression Profiling , Transcriptome/genetics , Phylogeny
6.
Mol Cancer ; 21(1): 191, 2022 10 03.
Article in English | MEDLINE | ID: mdl-36192757

ABSTRACT

BACKGROUND: In vivo gene editing of somatic cells with CRISPR nucleases has facilitated the generation of autochthonous mouse tumors, which are initiated by genetic alterations relevant to the human disease and progress along a natural timeline as in patients. However, the long and variable, orthotopic tumor growth in inner organs requires sophisticated, time-consuming and resource-intensive imaging for longitudinal disease monitoring and impedes the use of autochthonous tumor models for preclinical studies. METHODS: To facilitate a more widespread use, we have generated a reporter mouse that expresses a Cre-inducible luciferase from Gaussia princeps (GLuc), which is secreted by cells in an energy-consuming process and can be measured quantitatively in the blood as a marker for the viable tumor load. In addition, we have developed a flexible, complementary toolkit to rapidly assemble recombinant adenoviruses (AVs) for delivering Cre recombinase together with CRISPR nucleases targeting cancer driver genes. RESULTS: We demonstrate that intratracheal infection of GLuc reporter mice with CRISPR-AVs efficiently induces lung tumors driven by mutations in the targeted cancer genes and simultaneously activates the GLuc transgene, resulting in GLuc secretion into the blood by the growing tumor. GLuc blood levels are easily and robustly quantified in small-volume blood samples with inexpensive equipment, enable tumor detection already several months before the humane study endpoint and precisely mirror the kinetics of tumor development specified by the inducing gene combination. CONCLUSIONS: Our study establishes blood-based GLuc monitoring as an inexpensive, rapid, high-throughput and animal-friendly method to longitudinally monitor autochthonous tumor growth in preclinical studies.


Subject(s)
Copepoda , Lung Neoplasms , Animals , Clustered Regularly Interspaced Short Palindromic Repeats , Copepoda/genetics , Copepoda/metabolism , Gene Editing , Genes, Reporter , Humans , Luciferases/genetics , Luciferases/metabolism , Lung Neoplasms/genetics , Mice
7.
Mar Genomics ; 65: 100981, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35969942

ABSTRACT

Arctic and sub-arctic pelagic organisms can be exposed to effluents and spills from offshore petroleum-related activities and thus it is important to understand how they respond to crude oil related contaminants such as polycyclic aromatic hydrocarbons (PAHs). The copepod species Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus represent key links in the arctic marine food web. We performed a transcriptome analysis of the three species exposed to phenanthrene (Phe) and benzo[a]pyrene (BaP) representing low and high molecular weight PAHs, respectively. Differential expression of several genes involved in many cellular pathways was observed after 72 h exposure to Phe (0.1 µM) and BaP (0.1 µM). In C. finmarchicus and C. glacialis, the exposure resulted in up-regulation of genes encoding enzymes in xenobiotic biotransformation, particularly the phase II cytosolic sulfonation system that include 3'-phosphoadenosine 5'-phosphosulfate synthase (PAPSS) and sulfotransferases (SULTs). The sulfonation pathway genes were more strongly induced by BaP than Phe in C. finmarchicus and C. glacialis but were not affected in C. hyperboreus. However, a larger number of genes and pathways were modulated in C. hyperboreus by the PAHs including genes encoding xenobiotic biotransformation and lipid metabolism enzymes, suggesting stronger responses in this species. The results suggest that the cytosolic sulfonation is a major phase II conjugation pathway for PAHs in C. finmarchicus and C. glacialis. Some of the biotransformation systems affected are known to be involved in metabolism of endogenous compounds such as ecdysteroids, which may suggest potential interference with physiological and developmental processes of the copepod species.


Subject(s)
Copepoda , Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Benzo(a)pyrene/metabolism , Benzo(a)pyrene/toxicity , Copepoda/genetics , Copepoda/metabolism , Phenanthrenes/metabolism , Phenanthrenes/toxicity , Transcriptome , Water Pollutants, Chemical/toxicity , Xenobiotics
8.
Talanta ; 245: 123465, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35427949

ABSTRACT

This manuscript reports on a fully automatic sequential injection system incorporating a 3D printed module for real-time monitoring of the release of Metridia luciferase from a modified liver epithelial cell line. To this end, a simple and effective approach for the automation of flash-type chemiluminescence assays was developed. The 3D printed module comprised an apical and a basal compartment that enabled monitoring membrane processes on both sides of the cell monolayer aimed at elucidating the direction of luciferase release. A natural release was observed after transfection with the luciferase plasmid by online measurement of the elicited light from the reaction of the synthesized luciferase with the coelenterazine substrate. Model substances for acute toxicity from the group of cholic acids - chenodeoxycholic and deoxycholic acids - were applied at the 1.0 and 0.5 mmol L-1 levels. The tested cholic acids caused changes in cell membrane permeability that was accompanied by an increased luciferase release. The obtained kinetic profiles were evaluated based on the delay between the addition of the toxic substance and the increase of the chemiluminescence signal. All experiments were carried out in a fully automatic system in ca. 5 min per sample in 30 min intervals and no manual interventions were needed for a sampling period of at least 6 h.


Subject(s)
Copepoda , Animals , Cholic Acids , Copepoda/metabolism , Kinetics , Luciferases/genetics , Luciferases/metabolism , Luminescent Measurements
9.
PLoS One ; 17(3): e0266022, 2022.
Article in English | MEDLINE | ID: mdl-35358250

ABSTRACT

Salmon lice are ectoparasites on salmonids and feed on blood, mucus, and skin from their hosts. This causes high annual costs for treatment and control for the aquaculture industry. Salmon lice have a life cycle consisting of eight life stages. Sex determination by eye is only possible from the sixth stage onwards. A molecular sex determination has not been carried out so far, even though few individual sex-linked SNPs have been reported. In the present study, we used known sex-specific SNPs as a basis to sequence the complete sex-specific gene variants and used the sequence information to develop a sex determination assay. This assay could be used to determine the developmental speed of the two sexes already in the earliest life stages. Additionally, we sampled salmon lice in the nauplius II stage, determined the sex of each individual, pooled their RNA according to their sex, and used RNA sequencing to search for differences in gene expression and further sex-specific SNPs. We succeeded in developing a sex-determination assay that works on DNA or RNA from even the earliest larval stages of the salmon louse after hatching. At these early developmental stages, male salmon lice develop slightly quicker than females. We detected several previously unknown, sex-specific SNPs in our RNA-data seq, but only very few genes showed a differential expression between the sexes. Potential connections between SNPs, gene expression, and development are discussed.


Subject(s)
Copepoda , Fish Diseases , Animals , Copepoda/metabolism , Female , Fish Diseases/parasitology , Life Cycle Stages/genetics , Male , RNA/metabolism , Sex Characteristics
10.
J Parasitol ; 108(1): 10-21, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34995354

ABSTRACT

Globally, parasites are sensitive toward environmental changes, and, in some cases, they are even more sensitive than their hosts. However, there is limited knowledge on the physiological responses of parasites and their effects on their hosts in relation to environmental degradation. In this study, metallothioneins (MTs) were isolated and compared between the ectoparasite Lamproglena clariae and its host fish Clarias gariepinus. Differences in the levels of MTs in the parasite and host were compared to physicochemical water quality variables and metals to determine if MT expression was linked with changes in water quality. Clarias gariepinus individuals were sampled from 2 sites of differing water quality along the Vaal River using gill nets and assessed for L. clariae. Gill, muscle, and liver tissue of the host and L. clariae were collected and stored in liquid nitrogen for analysis of MT. Water and sediment samples were collected for metal analysis by inductively coupled plasma-optical emission spectrometry and inductively coupled plasma-mass spectrometry. Nutrient levels and water hardness in water samples were assessed using spectrophotometry. MTs were quantified using spectrophotometry and size exclusion chromatography in the host and parasite, respectively. Infections by L. clariae differed between sites, with higher parasite intensity at the unpolluted Vaal Dam site. Concentrations of MT in host tissues and L. clariae were significantly higher at the polluted site, below the Vaal River Barrage, compared to the Vaal Dam site. Parasite MT concentrations were significantly lower compared to concentrations in the liver and gill tissue of C. gariepinus individuals. In conclusion, differences in the concentrations of MT and infection biology of L. clariae reflected the state of the environment and support the usefulness of this parasite and other Lamproglena spp. as bioindicators.


Subject(s)
Catfishes/parasitology , Copepoda/metabolism , Ectoparasitic Infestations/veterinary , Fish Diseases/parasitology , Metallothionein/metabolism , Water Quality , Animals , Chromatography, Gel/veterinary , Copepoda/pathogenicity , Ectoparasitic Infestations/parasitology , Environmental Biomarkers , Gills/chemistry , Gills/parasitology , Liver/chemistry , Metallothionein/analysis , Muscles/chemistry , Rabbits
11.
PLoS One ; 16(11): e0259371, 2021.
Article in English | MEDLINE | ID: mdl-34748608

ABSTRACT

The marine copepod, Tigriopus californicus, produces the red carotenoid pigment astaxanthin from yellow dietary precursors. This 'bioconversion' of yellow carotenoids to red is hypothesized to be linked to individual condition, possibly through shared metabolic pathways with mitochondrial oxidative phosphorylation. Experimental inter-population crosses of lab-reared T. californicus typically produces low-fitness hybrids is due in large part to the disruption of coadapted sets nuclear and mitochondrial genes within the parental populations. These hybrid incompatibilities can increase variability in life history traits and energy production among hybrid lines. Here, we tested if production of astaxanthin was compromised in hybrid copepods and if it was linked to mitochondrial metabolism and offspring development. We observed no clear mitonuclear dysfunction in hybrids fed a limited, carotenoid-deficient diet of nutritional yeast. However, when yellow carotenoids were restored to their diet, hybrid lines produced less astaxanthin than parental lines. We observed that lines fed a yeast diet produced less ATP and had slower offspring development compared to lines fed a more complete diet of algae, suggesting the yeast-only diet may have obscured effects of mitonuclear dysfunction. Astaxanthin production was not significantly associated with development among lines fed a yeast diet but was negatively related to development in early generation hybrids fed an algal diet. In lines fed yeast, astaxanthin was negatively related to ATP synthesis, but in lines fed algae, the relationship was reversed. Although the effects of the yeast diet may have obscured evidence of hybrid dysfunction, these results suggest that astaxanthin bioconversion may still be related to mitochondrial performance and reproductive success.


Subject(s)
Carotenoids/metabolism , Copepoda/genetics , Genetic Fitness , Animals , Aquatic Organisms , Cell Nucleus/genetics , Cell Nucleus/metabolism , Copepoda/metabolism , Hybridization, Genetic , Invertebrates , Mitochondria/genetics , Mitochondria/metabolism , Oxidative Phosphorylation , Xanthophylls/metabolism
12.
Mar Biotechnol (NY) ; 23(5): 710-723, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34564738

ABSTRACT

The role of miRNAs in pharmacological responses through gene regulation related to drug metabolism and the detoxification system has recently been determined for terrestrial species. However, studies on marine ectoparasites have scarcely been conducted to investigate the molecular mechanisms of pesticide resistance. Herein, we explored the sea louse Caligus rogercresseyi miRNome responses exposed to delousing drugs and the interplaying with coding/non-coding RNAs. Drug sensitivity in sea lice was tested by in vitro bioassays for the pesticides azamethiphos, deltamethrin, and cypermethrin. Ectoparasites strains with contrasting susceptibility to these compounds were used. Small-RNA sequencing was conducted, identifying 2776 novel annotated miRNAs, where 163 mature miRNAs were differentially expressed in response to the drug testing. Notably, putative binding sites for miRNAs were found in the ADME genes associated with the drugs' absorption, distribution, metabolism, and excretion. Interactions between the miRNAs and long non-coding RNAs (lncRNAs) were also found, suggesting putative molecular gene regulation mechanisms. This study reports putative miRNAs correlated to the coding/non-coding RNAs modulation, revealing novel pharmacological mechanisms associated with drug resistance in sea lice species.


Subject(s)
Antiparasitic Agents/pharmacology , Copepoda/drug effects , Drug Resistance/genetics , MicroRNAs/metabolism , Animals , Copepoda/metabolism , Drug Resistance/drug effects , Fish Diseases/parasitology , Gene Expression Profiling , Gene Expression Regulation/drug effects , Organothiophosphates/pharmacology , Pyrethrins/pharmacology , RNA, Long Noncoding/genetics , Salmo salar/parasitology
13.
PLoS One ; 16(8): e0255837, 2021.
Article in English | MEDLINE | ID: mdl-34398912

ABSTRACT

Unusually warm conditions recently observed in the Pacific Arctic region included a dramatic loss of sea ice cover and an enhanced inflow of warmer Pacific-derived waters. Moored sediment traps deployed at three biological hotspots of the Distributed Biological Observatory (DBO) during this anomalously warm period collected sinking particles nearly continuously from June 2017 to July 2019 in the northern Bering Sea (DBO2) and in the southern Chukchi Sea (DBO3), and from August 2018 to July 2019 in the northern Chukchi Sea (DBO4). Fluxes of living algal cells, chlorophyll a (chl a), total particulate matter (TPM), particulate organic carbon (POC), and zooplankton fecal pellets, along with zooplankton and meroplankton collected in the traps, were used to evaluate spatial and temporal variations in the development and composition of the phytoplankton and zooplankton communities in relation to sea ice cover and water temperature. The unprecedented sea ice loss of 2018 in the northern Bering Sea led to the export of a large bloom dominated by the exclusively pelagic diatoms Chaetoceros spp. at DBO2. Despite this intense bloom, early sea ice breakup resulted in shorter periods of enhanced chl a and diatom fluxes at all DBO sites, suggesting a weaker biological pump under reduced ice cover in the Pacific Arctic region, while the coincident increase or decrease in TPM and POC fluxes likely reflected variations in resuspension events. Meanwhile, the highest transport of warm Pacific waters during 2017-2018 led to a dominance of the small copepods Pseudocalanus at all sites. Whereas the export of ice-associated diatoms during 2019 suggested a return to more typical conditions in the northern Bering Sea, the impact on copepods persisted under the continuously enhanced transport of warm Pacific waters. Regardless, the biological pump remained strong on the shallow Pacific Arctic shelves.


Subject(s)
Carbon Cycle , Animals , Arctic Regions , Chlorophyll A/analysis , Copepoda/growth & development , Copepoda/metabolism , Diatoms/growth & development , Diatoms/metabolism , Ecosystem , Ice Cover , Phytoplankton/growth & development , Phytoplankton/metabolism , Temperature , Zooplankton/growth & development , Zooplankton/metabolism
14.
Article in English | MEDLINE | ID: mdl-34182096

ABSTRACT

iTRAQ proteomic profiling was conducted to examine the proteomic responses of the Antarctic copepod Tigriopus kingsejongensis under ultraviolet B (UVB) exposure. Of the 5507 proteins identified, 3479 proteins were annotated and classified into 25 groups using clusters of orthologous genes analysis. After exposing the T. kingsejongensis to 12 kJ/m2 UVB radiation, 77 biological processes were modulated over different time periods (0, 6, 12, 24, and 48 h) compared with the control. A Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that UVB exposure in T. kingsejongensis downregulated ribosome and glyoxylate and dicarboxylate metabolism at all time points. Furthermore, antioxidant and chaperone proteins were highly downregulated in response to UVB exposure, causing protein damage and activating apoptotic processes in the 48 h UVB exposure group. These proteomic changes show the mechanisms that underlie the detrimental effects of UVB on the cellular defense systems of the Antarctic copepod T. kingsejongensis.


Subject(s)
Apoptosis/radiation effects , Copepoda/metabolism , Proteomics , Ultraviolet Rays , Animals , Antarctic Regions , Biomarkers , Copepoda/genetics , Gene Expression Profiling , Gene Expression Regulation/radiation effects
15.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33479184

ABSTRACT

In the open ocean, elevated carbon flux (ECF) events increase the delivery of particulate carbon from surface waters to the seafloor by severalfold compared to other times of year. Since microbes play central roles in primary production and sinking particle formation, they contribute greatly to carbon export to the deep sea. Few studies, however, have quantitatively linked ECF events with the specific microbial assemblages that drive them. Here, we identify key microbial taxa and functional traits on deep-sea sinking particles that correlate positively with ECF events. Microbes enriched on sinking particles in summer ECF events included symbiotic and free-living diazotrophic cyanobacteria, rhizosolenid diatoms, phototrophic and heterotrophic protists, and photoheterotrophic and copiotrophic bacteria. Particle-attached bacteria reaching the abyss during summer ECF events encoded metabolic pathways reflecting their surface water origins, including oxygenic and aerobic anoxygenic photosynthesis, nitrogen fixation, and proteorhodopsin-based photoheterotrophy. The abundances of some deep-sea bacteria also correlated positively with summer ECF events, suggesting rapid bathypelagic responses to elevated organic matter inputs. Biota enriched on sinking particles during a spring ECF event were distinct from those found in summer, and included rhizaria, copepods, fungi, and different bacterial taxa. At other times over our 3-y study, mid- and deep-water particle colonization, predation, degradation, and repackaging (by deep-sea bacteria, protists, and animals) appeared to shape the biotic composition of particles reaching the abyss. Our analyses reveal key microbial players and biological processes involved in particle formation, rapid export, and consumption, that may influence the ocean's biological pump and help sustain deep-sea ecosystems.


Subject(s)
Carbon Cycle/physiology , Carbon/metabolism , Copepoda/chemistry , Cyanobacteria/chemistry , Diatoms/chemistry , Fungi/chemistry , Rhizaria/chemistry , Animals , Aquatic Organisms , Carbon/chemistry , Copepoda/classification , Copepoda/genetics , Copepoda/metabolism , Cyanobacteria/classification , Cyanobacteria/genetics , Cyanobacteria/metabolism , Diatoms/classification , Diatoms/genetics , Diatoms/metabolism , Ecosystem , Fungi/classification , Fungi/genetics , Fungi/metabolism , Nitrogen Fixation/physiology , Oceans and Seas , Photosynthesis/physiology , Rhizaria/classification , Rhizaria/genetics , Rhizaria/metabolism , Seasons , Seawater/chemistry , Seawater/microbiology
16.
Mar Pollut Bull ; 163: 111937, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33341583

ABSTRACT

To understand how the marine copepod Tigriopus japonicus responds to the toxic marine dinoflagellate Gymnodinium catenatum, we assessed acute toxicity and investigated swimming behavior parameters (e.g., swimming speed, swimming path trajectory, and swimming distance) in response to G. catenatum exposure. In addition, the mRNA expression levels of detoxification-related genes (e.g., phase I cytochrome P450 [CYP] and phase II glutathione-S transferase [GST]) were measured in G. catenatum-exposed copepods. No significant change in survival was observed in response to G. catenatum, but swimming speed was significantly decreased (P < 0.05) at a high concentration of G. catenatum (600 cells/mL). Furthermore, the swimming distance was significantly decreased (P < 0.05) compared to that of the control at 600 cells/mL G. catenatum, while no significant change in swimming path trajectory was observed, suggesting that G. catenatum potentially has adverse effects on the swimming behavior of T. japonicus. In addition, the transcriptional regulation of T. japonicus CYPs and -GSTs were significantly upregulated and downregulated (P < 0.05), respectively, in response to G. catenatum. In particular, certain genes (e.g., CYPs [CYP307E1, CYP3041A1, and CYP3024A2] and GSTs [GST-kappa, GST-mu5, and GST-omega]) were significantly induced (P < 0.05) by G. catenatum, suggesting that these genes likely play a critical role in detoxification mechanisms and might be useful as potential molecular biomarkers in response to G. catenatum exposure. Overall, these results elucidate the potential impacts of the dinoflagellate G. catenatum on the swimming behavior and detoxification system of the marine copepod T. japonicus.


Subject(s)
Copepoda , Dinoflagellida , Shellfish Poisoning , Animals , Copepoda/metabolism , Dinoflagellida/metabolism , Inactivation, Metabolic , Saxitoxin
17.
BMC Genomics ; 21(1): 693, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33023465

ABSTRACT

BACKGROUND: Copepods are fundamental components of pelagic food webs, but reports on how molecular responses link to reproductive success in natural populations are still scarce. We present a de novo transcriptome assembly and differential expression (DE) analysis in Temora stylifera females collected in the Gulf of Naples, Mediterranean Sea, where this copepod dominates the zooplankton community. High-Throughput RNA-Sequencing and DE analysis were performed from adult females collected on consecutive weeks (May 23rd and 30th 2017), because opposite naupliar survival rates were observed. We aimed at detecting key genes that may have influenced copepod reproductive potential in natural populations and whose expression was potentially affected by phytoplankton-derived oxylipins, lipoxygenase-derived products strongly impacting copepod naupliar survival. RESULTS: On the two sampling dates, temperature, salinity, pH and oxygen remained stable, while variations in phytoplankton cell concentration, oxylipin concentration and oxylipin-per-diatom-cell production were observed. T. stylifera naupliar survival was 25% on May 23rd and 93% on May 30th. De novo assembly generated 268,665 transcripts (isoforms) and 120,749 unique 'Trinity predicted genes' (unigenes), of which 50% were functionally annotated. Out of the 331 transcript isoforms differentially expressed between the two sampling dates, 119 sequences were functionally annotated (58 up- and 61 down-regulated). Among predicted genes (unigenes), 144 sequences were differentially expressed and 31 (6 up-regulated and 25 down-regulated) were functionally annotated. Most of the significantly down-regulated unigenes and isoforms were A5 Putative Odorant Binding Protein (Obp). Other differentially expressed sequences (isoforms and unigenes) related to developmental metabolic processes, protein ubiquitination, response to stress, oxidation-reduction reactions and hydrolase activities. DE analysis was validated through Real Time-quantitative PCR of 9 unigenes and 3 isoforms. CONCLUSIONS: Differential expression of sequences involved in signal detection and transduction, cell differentiation and development offered a functional interpretation to the maternally-mediated low naupliar survival rates observed in samples collected on May 23rd. Down-regulation of A5 Obp along with higher quantities of oxylipins-per-litre and oxylipins-per-diatom-cell observed on May 23rd could suggest oxylipin-mediated impairment of naupliar survival in natural populations of T. stylifera. Our results may help identify biomarker genes explaining variations in copepod reproductive responses at a molecular level.


Subject(s)
Biomass , Copepoda/genetics , Transcriptome , Animals , Copepoda/metabolism , Copepoda/physiology , Diet , Female , Oxylipins/metabolism , Phytoplankton/growth & development , Reproduction
18.
Mar Drugs ; 18(10)2020 Oct 05.
Article in English | MEDLINE | ID: mdl-33028032

ABSTRACT

The harpacticoid copepod Tigriopus californicus has been recognized as a model organism for the study of marine pollutants. Furthermore, the nutritional profile of this copepod is of interest to the aquafeed industry. Part of this interest lies in the fact that Tigriopus produces astaxanthin, an essential carotenoid in salmonid aquaculture. Here, we study for the first time the stereochemistry of the astaxanthin produced by this copepod. We cultured T. californicus with different feeding sources and used chiral high-performance liquid chromatography with diode array detection (HPLC-DAD) to determine that T. californicus synthesizes pure 3S,3'S-astaxanthin. Using meso-zeaxanthin as feed, we found that the putative ketolase enzyme from T. californicus can work with ß-rings with either 3R- or 3S-oriented hydroxyl groups. Despite this ability, experiments in the presence of hydroxylated and non-hydroxylated carotenoids suggest that T. californicus prefers to use the latter to produce 3S,3'S-astaxanthin. We suggest that the biochemical tools described in this work can be used to study the mechanistic aspects of the recently identified avian ketolase.


Subject(s)
Copepoda/metabolism , Animals , Microalgae/chemistry , Stereoisomerism , Xanthophylls/metabolism
19.
Ecotoxicol Environ Saf ; 203: 111043, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32888597

ABSTRACT

Intraspecific difference in toxicity brings uncertainty to ecological risk assessment (ERA) and water quality criteria (WQC) of chemicals. Here, we compared intraspecies sensitivity to toxicants for Mesocyclops leuckarti of which toxicity data was obtained from published literatures, and zebrafish Danio rerio of which toxicity data was done in this study). Due to the internal concentration of chemicals not measured, simplified toxicokinetic-toxicodynamic (TK-TD) models were used, and we investigated whether TK-TD parameters estimated by Bayesian method might represent the differences in sensitivity between life-stages of 2 species. The results demonstrated that the difference in TK-TD parameters (background mortality m0, no effect concentration NEC, the killing rate ks, and the dominant rate kd) could represent the toxicity difference between life-stages of individual species. The TK-TD model could predict toxicity in individual species (Cyprinus carpio L., Enchytraeus crypticus, Folsomia candida, Hyalella Azteca) exposed to different chemical concentrations and successfully extrapolate toxicity between different life stages of Mesocyclops leuckarti and Danio rerio by scaling several TK-TD parameters. The modified TK-TD model on the extrapolation toxicity of chemicals between life stages for species could be useful for the ERA and for deriving and revising WQC for chemicals.


Subject(s)
Carps/metabolism , Copepoda/metabolism , Embryo, Nonmammalian/drug effects , Larva/drug effects , Models, Biological , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism , Animals , Bayes Theorem , Bioaccumulation , Carps/growth & development , Copepoda/growth & development , Embryo, Nonmammalian/metabolism , Larva/metabolism , Risk Assessment , Species Specificity , Toxicokinetics , Zebrafish/growth & development
20.
Parasitol Res ; 119(12): 3977-3985, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32833050

ABSTRACT

Larval copepods are frequent parasites that infest fish larvae along the Chilean coast. Because these parasites develop on fish during the early development, when their bodies are fragile and in a recent stage, they can affect the fishes' early life history traits (ELHT). The goal of this study was to determine the effect of parasitic copepods on the ELHT of the larvae of the clingfish Gobiesox marmoratus (Teleostei: Gobiesocidae) using otolith microstructure analysis. Ichthyoplankton samples were collected during austral winter (July and August 2012), in the inner shelf waters off Valparaiso Bay, central Chile. A total of 95 non-parasitized larvae (NPL) and 95 parasitized (PL) with copepods were randomly selected for subsequent analyses. Parasitized larvae of G. marmoratus were larger than NPL. The right otolith tended to be larger than the left otolith in the fish larvae, but with a higher asymmetry in PL. The PL showed larger otoliths-at-size than the NPL, particularly in smaller larvae (< 8 mm of standard length, SL). Nonetheless, parasitized larvae larger than 8 mm SL showed the opposite trend that is smaller-at-size otoliths than NPL. The Gompertz models indicated that the asymptotic length of NPL doubled the length of PL; this suggests that parasitic copepods affect the maximum size attained by the PL. In conclusion, parasitic copepods negatively affect the ELHT of G. marmoratus larvae and the greater asymmetry can be attributed to parasitism.


Subject(s)
Copepoda/metabolism , Fishes/embryology , Fishes/parasitology , Animals , Chile , Life History Traits , Parasitic Diseases, Animal , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...